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Abstract
We investigate diffusion of particles adsorbed on a heterogeneous honeycomb lattice with two
kinds of non-equivalent sites. General analytical expressions for the chemical and jump
diffusion coefficients have been derived in the case of strong inhomogeneity. It is shown that the
character of the particle migration depends crucially on the relative jump frequencies of
particles occupying deep and shallow sites. In the case of widely differing jump frequencies,
particles perform pairs of strongly correlated jumps. We have calculated coverage dependencies
of the diffusion coefficients and some thermodynamic quantities for attractive and repulsive
lateral pairwise interactions and compared them with the results of the kinetic Monte Carlo
simulations of the particle diffusion. Almost perfect agreement between the respective results
has been found.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Diffusive mass transfer controls the rates of a multitude of
physical, chemical, and biological processes. Theory primarily
aims at understanding the details of migration processes
in these application areas. The theoretical description of
various kinetic phenomena observed in experimental studies
presents a considerable challenge. Appropriate models must
reflect the elementary microscopic migration acts of particles
which depend on the structure and mutual particle–particle
interaction. Therefore, it is not surprising that a great deal
of effort has been devoted to developing the simplest possible
models, which offer the advantage of exact treatment, despite
oversimplifying the real phenomena. To take all these aspects
into account it is most convenient to employ the lattice gas
models. In these models particles perform stochastic jumps
among the sites of a discrete lattice. During migration, affected
by thermal activation, the particles have to surmount barriers
separating the sites. The effective barrier height depends on
the specific atomic environment and also, as a consequence of
the lateral interaction, on the number and configuration of the
neighbor particles.

3 Author to whom any correspondence should be addressed.

In general the determination of the diffusion coefficients
requires the solution of a kinetic equation for a many-particle
system. However, under simplifying assumptions, the problem
can be reduced to the calculation of purely thermodynamic
quantities: free energy and its derivatives over chemical
potential and interaction parameters [1–3]. The task of
computing thermodynamic quantities is substantially simpler
and computationally less expensive by orders of magnitude
than kinetic Monte Carlo (kMC) simulations of migration
which suffer from the statistical uncertainty of the results.
The analytical expressions for the diffusion coefficients are
quite simple and valid over wide regions of the particle
coverage and temperature down to the subcritical values.
These expressions work perfectly in homogeneous lattices with
different dimensions and symmetries.

Diffusion on inhomogeneous honeycomb lattice has been
studied theoretically in some previous investigations [4, 5].
The derived analytical expressions for the diffusion coefficients
failed to give even qualitatively correct results. The
discrepancies between the theoretical results and the kMC data
were considerable. The surface inhomogeneity changes the
particle migration substantially. The coverage dependencies
for tracer, jump, and chemical diffusion coefficients differ
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qualitatively from those obtained for the homogeneous lattice.
The striking disagreement between the analytical and kMC
results demonstrates clearly that the description of the diffusion
based on the single-particle jumps is inapplicable in the
inhomogeneous systems. Despite the fact that particles
really perform single jumps over the lattice and the kMC
algorithms simulate these elementary migration acts correctly,
the analytical treatment of the diffusion should take into
account a rather specific pair jump correlation arising due to
the lattice inhomogeneity.

In the present work we have revisited the honeycomb
inhomogeneous lattice with two non-equivalent sites, the so-
called bivariate trap model. The purpose of the investigation
is to present the derivation of the expressions for the jump
and chemical diffusion coefficients. These expressions are
quite accurate and give a correct description of the particle
migration. Using kMC simulations we check these expressions
comparing the numerical and analytical results. The new
expressions derived in this work fit perfectly the MC data in
the whole coverage region for attractive and repulsive lateral
interaction between the particles.

The paper is structured as follows. In section 2 we
formulate the model, derivation of the diffusion equation, and
the expressions for the diffusion coefficients. Sections 3 and 4
respectively present some details of the RSRG approach and
MC technique employed in this work. Our results are presented
and discussed in section 5. Finally, we conclude with a brief
summary of our results in section 6.

2. Diffusion of particles on inhomogeneous lattices

In the following we consider an array of adsorption sites which
form a regular honeycomb lattice of spacing a and coordination
number z = 3. There are two kinds of sites: deep (d) with a
depth εd and shallow (s) with a depth εs , arranged in alternate
order. Hence, the lattice may be regarded as being composed
of two equivalent interleaved sublattices comprised of d and s
sites only. Surfaces of such type really exist. There are (111)
planes of crystals having the fcc structure. Every surface atom
on these planes is surrounded by six hollow sites. One half of
the hollow sites has atoms from the second layer at the bottom
and the other half has atoms from the third layer. Therefore,
it seems quite natural to suppose that for most adsorbates the
adsorption energies will be different in these sites.

The state of the particle system is described by a set of
occupation numbers {ni }:

ni =
{

1 if the i th site is occupied,

0 if the i th site is empty.
(1)

In thermodynamic equilibrium the system behavior is
described by the grand partition function,

Q =
∑
{ni }

exp (μNa − Ha) , (2)

or its corresponding potential, F = N−1 ln Q, termed the free
energy. Here μ, Ha, Na , and N denote the chemical potential,
Hamiltonian of the system, and number of particles and lattice

sites, respectively; the summation is carried out over all particle
configurations (here and henceforth we use the system of units
with kBT = 1). The Hamiltonian and number of particles are
given by

Ha = −εd

∑
i∈d

ni −εs

∑
i∈s

ni +ϕ
∑
〈N N〉

ni nj, Na =
∑

i

ni .

(3)
Here ϕ is the pair interaction energy of the nearest
neighbor (NN) particles and symbols i ∈ d , i ∈ s, 〈N N〉
denote summation over all d and s sites, and lattice bonds,
respectively. We introduce surface coverage, θ , as follows:
θ = Na/N .

The migration of particles over the lattice is described
by some diffusion coefficients. Conceptually the simplest
diffusion coefficient is a single particle or tracer diffusion
coefficient, Dt, which addresses the random walks of
individual tagged particles. Another useful quantity is the jump
diffusion coefficient, Dj, related to the asymptotic behavior of
the center of mass of the system. The coefficients are well-
suited for the kMC simulations as they are expressed in terms
of directly accessible quantities, i.e.

Dt = lim
t→∞

1

4Nat

Na∑
k=1

〈[
��rk(t)

]2
〉
,

Dj = lim
t→∞

1

4Nat

〈[
Na∑

k=0

��rk(t)

]2〉
.

(4)

Here ��rk(t) denotes the displacement of the kth particle
after time t ; the brackets 〈· · ·〉 denote the canonical ensemble
average.

The chemical diffusion coefficient Dc is determined by
Fick’s first law, which constitutes the relationship between
the flux of particles, �J , and the gradient of the surface
coverage: �J = −Dc �∇θ . The jump and the chemical diffusion
coefficients are simply related by the Kubo–Green equation [6]

Dc = Djθ/χT , (5)

where χT is the isothermal susceptibility of the system.
To describe particle diffusion, the whole process must be

resolved into its elementary components. It is quite natural
to consider the evolution of the occupation numbers in terms
of the particle jumps. A particle being in a site can jump
to any empty NN site. This process is constrained by the
hard-core repulsion preventing multiple occupancy of the sites.
The jumping particle must surmount a potential barrier Ei f

separating the initial and final sites. In the simplest case of
the Langmuir lattice gas (ϕ = 0) the barrier is a constant
εd or εs depending on the type of initial site. For interacting
particles the activation energy depends on the number of
adjacent particles. We assume that the interactions affect the
minima of the potential landscape and neglect their influence
on an activated particle at the saddle point of the potential
barrier. Then, the jump frequency from the i th to the f th site
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has the following form

νi f = ν exp

{
−εi + ϕ

z∑
k=1

nk

}
, (6)

where summation runs over all NNs of the i th site.
The expression for the jump frequency is quite simple

and has been used widely. It was obtained in the transition
state theory [7]. It is the escape rate of particles from a deep
potential well. All details of the particle motion are hidden in
the pre-exponential factor ν, which (weakly) depends on the
temperature and the parameters of the potential relief. The
leading exponential factor determines the main features of the
particle migration. The jump frequency depends on the energy
of the initial state only and is the same for jumps to all NN
sites. And really it is very suitable for the kMC simulations.
It is certainly important to note that equation (6) represents
a mathematical recipe or transition algorithm describing how
particles move over the lattice. Different algorithms are
conceivable and have been used in the diffusion theory and
kMC simulations, some of them are described in [8].

On the inhomogeneous lattice all particles tend to occupy
d sites which results in either an almost empty s sublattice and
partially filled d sublattice (θ < 1

2 ) or an almost completely
filled d sublattice and partially filled s sublattice (θ > 1

2 ). The
inhomogeneity implies a higher jump probability for s → d ,
fast jumps, than for d → s, slow jumps. The characteristic
times of particle sojourn in the d and s sites, τd ∼ exp(εd)

and τs ∼ exp(εs) differ considerably, τd 
 τs . And a rather
specific correlation between the particle jumps arises in this
case. Any d → s jump transfers a particle to the s sublattice
and creates an unstable local non-equilibrium configuration
consisting of a pair of NN sites with the occupied s and empty
d sites. There are two possible ways for the fast decay of this
configuration: either the particle jumps to an empty d site or
the vacancy left by the particle is filled by another particle from
a filled s site.

As the fast jump takes place almost immediately after the
slow jump their combination ought to be considered as the
central entity of the diffusion process. The particle jumps
collect into pairs: any slow jump is followed by a fast jump.
Such jump pairs govern the particle migration. The frequency
of these events is determined by the slowest component, d → s
jump frequency. Despite the fact that the individual jumps are
statistically uncorrelated, the lattice inhomogeneity imposes
a strong pairwise correlation between slow and fast jumps.
Correlation between jump pairs is absent.

The characteristic coverage θ = 1
2 separates two regions

with distinctly different types of jump pairs dominating in the
particle migration. For θ < 1

2 , the s sublattice is empty and any
act of migration starts by a slow jump from an initial d site to
an intermediate empty s site. Shortly after, the particle leaves
the intermediate site and moves to a final d site. The fast jump
probability depends on the total number of the occupied NN
d sites, nocc at the intermediate d site, i.e. (z − nocc)

−1. The
migration of the particles proceeds by pairs of slow and fast
jumps. The probability of the jump pair depends not only on
the occupation numbers of the initial and final sites, but on the
occupation numbers of the NN intermediate site.

For θ > 1
2 the d sublattice is filled and the s sublattice is

partially occupied. Any act of migration starts by a slow jump
from an intermediate d site to a final s site. The jump creates
a vacancy in the completely filled d sublattice and initiates a
fast jump from an initial s site to the intermediate site. The
fast jump probability depends on the number of occupied NN
sites, nocc, at the intermediate d site, i.e. n−1

occ. The pairs of
successive slow and fast jumps performed by different particles
transfer particles over the s sublattice using occupied d sites as
intermediate steps.

The temporal evolution of the occupation numbers is
described by the balance equation

ni (t + �t) − ni (t) =
6∑

f =1

[
J f i(�t) − Ji f (�t)

]
(7)

where Ji f (�t) denotes the number of particle jumps from the
i th to the f th site after time �t . There are two contributions
to Ji f arising due to possible local particle configurations. Let
us consider a cluster of four sites with the central s site (0th)
and its three d NNs (1st, 2nd and 3rd). The sequence of slow
and fast jumps (1st → 0th → 2nd) transfers particles from the
1st to the 2nd site if the 1st site is occupied and 0th and 2nd
sites are empty (n1 = 1, n0 = n2 = 0). The occupation of the
3rd site influences the probability of the fast jump. For n3 = 0
there are three possible ways for the particle to leave the 0th
site, otherwise there are only two

J12 ∝ ν10n1h0h2(h3/3 + n3/2), 0 ∈ s, (8)

where hi ≡ 1 − ni .
The second type of jump sequence has a slightly different

combination of multipliers. Again we consider a cluster of four
sites with the central d site and its three s NNs. The sequence
of slow and fast jumps (0th → 2nd and 1st → 0th) transfers
particles from the 1st to the 2nd site if the 1st and 0th sites are
occupied and the 2nd site is empty (n1 = n0 = 1, n2 = 0).
The occupation of the 3rd site influences the probability of the
fast jump. For n3 = 0 there are two particles which can occupy
the vacancy, otherwise three particles could possibly fill the 0th
site

J12 ∝ ν02n0h2n1(n3/3 + h3/2), 0 ∈ d. (9)

Invoking the local equilibrium approximation and neglecting
memory effects, the balance equation is easily reduced to the
ordinary diffusion equation. The analytical expression for Dc

can be derived quite easily (for details see, e.g. [1, 3, 9])

Dc = D0 exp(μ)χ−1
T P3, (10)

where D0 = 3
8νa2; the correlation function P3 depends on the

occupation numbers of four sites

P3 = 〈h1h0h2(3 − h3)〉, 0 ∈ s, θ < 1/2,

P3 = 〈h1h0n2(3 − n3)〉, 0 ∈ d, θ > 1/2.
(11)

The thermodynamic quantities occurring in the right-hand
side (RHS) of equation (10) can be expressed via the first and
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second derivatives of the free energy over its arguments as
follows:

θ = ∂ F

∂μ
, χT = ∂2 F

∂μ2
,

P00 ≡ 〈h0h1〉 = 1 − 2θ − 2

z

(
∂ F

∂ϕ

)
.

(12)

Note, that the kinetic coefficients Dc and Dj which
describe, in principle, the non-equilibrium behavior of
the lattice gas system, are related to the equilibrium
thermodynamic quantities. They depend on the correlation
functions of two, three, and four sites. These correlators can
be approximately expressed via the pair correlation function
P00 and mean values of the occupation numbers on the d and s
sublattices.

3. Real-space renormalization group (RSRG)
transformation

A variety of analytical methods can be used for the calculation
of the thermodynamical quantities which enter the expressions
for the diffusion coefficients. The RSRG approach is particular
simple so that a rather modest effort suffices to compute data
of good accuracy especially in the two-dimensional lattice
gas systems. We outline briefly the RSRG method used for
this purpose. It is well known that there is a one to one
correspondence between the lattice gas model and spin model
in an external magnetic field. Empty and occupied sites are
equivalent to s = −1 and s = 1, respectively. Using the
obvious relation between the spins and occupation numbers,
2ni = 1 + si , the equivalent reduced Hamiltonian Hs =
μNa − Ha is

Hs = hd

∑
i∈d

si + hs

∑
i∈s

si + p
∑
〈nn〉

si sj + Nc. (13)

Here
hd = (μ + εd)/2 − zϕ/4,

hs = (μ + εs)/2 − zϕ/4,

p = −ϕ/4,

c = μ/2 + (εd + εs)/4 − zϕ/8.

(14)

In the RSRG method the whole lattice is divided into
blocks of L sites [10, 11]. A block spin Sα is assigned to
each block. All blocks together must form a lattice of the same
symmetry. The RSRG transformation of the spin system allows
the reduction of the number of independent variables, i.e. the
transition from the set of N site spins {si } to N/L block spins
{Sα}. For blocks with an odd number of spins L the block spin
Sα is usually determined by the so-called majority rule

Sα = sgn

(
L∑

i=1

si

)
, (15)

where sgn(x) = ±1 depending on the sign of its argument.
In the framework of the RSRG approach, one usually

employs periodic boundary conditions. It is assumed that

the whole lattice is given by the periodic continuation of a
small cluster of blocks. In the present work we consider the
cluster of two blocks only [12]. Due to the simplicity of this
cluster, no additional interactions appear in the renormalized
Hamiltonian. It is the same Hamiltonian of the honeycomb
lattice with, however, renormalized values for the external
magnetic fields Hd , Hs and interaction parameter P . The
relations between the original and renormalized quantities are
obtained via the equation

Hd S1 + Hs S2 + z PS1S2 +2Lg = ln

{∑
{s}

exp[Hs]
}

= �S1,S2 .

(16)
Here the summation is carried out over all possible
configurations {si } with fixed values of the block spins S1,2 =
±1. The system of the RG equations has simple form

Hd(hd , hs , p) = (
�1,1 − �−1,−1 + �1,−1 − �−1,1

)
/4,

Hs(hd , hs, p) = (
�1,1 − �−1,−1 − �1,−1 + �−1,1

)
/4,

P(hd , hs , p) = (
�1,1 + �−1,−1 − �1,−1 − �−1,1

)
/4z,

g(hd, hs , p) = (
�1,1 + �−1,−1 + �1,−1 + �−1,1

)
/8L .

(17)
The RSRG transformation functions �±1,±1 can be written in
the general form as follows

�±1,±1 = ln

[
N±±∑
i=1

T ±±
i1 exp

(
T ±±

i2 hd + T ±±
i3 hs + T ±±

i4 p
)]

.

(18)
The four matrices T̂ ±± are determined by the blocks of
the RSRG transformation. These matrices are used for
fast calculations of the free energy, F , and its derivatives
for any values of the magnetic fields and interaction in the
process of sequential RSRG transformations of the original
Hamiltonian [11]

F(hd , hs , p) = c +
∞∑

m=0

L−m g
(

H (m)

d , H (m)
s , P(m)

)
. (19)

Here H (m)
d , H (m)

s , P(m) are the parameters of the renormalized
Hamiltonian obtained after the mth RSRG transformation;
H (0)

d,s = hd,s , P(0) = p.
The accuracy of the RSRG data depends crucially on

the size and symmetry of the blocks used in the RSRG
transformation. Very good results have been obtained for the
RSRG blocks with L = 7 and 13 investigated in [12].

4. Monte Carlo simulations

Here we give a brief overview of the kMC algorithm used
for simulations. For application of the MC method in surface
diffusion interested readers are referred to [13].

The system is realized by a two-dimensional array of
N = M × M + 2 sites (M = 32, 64) with the helical
boundary conditions [14]. An initial configuration is generated
by adsorbing Na particles on the lattice at random. The main
drawback of the ordinary kMC algorithm for inhomogeneous

4



J. Phys.: Condens. Matter 20 (2008) 415210 A Tarasenko and L Jastrabik

Figure 1. Adsorption isotherms θ versus μ for different values of the
interaction parameter ϕ as indicated. Lines denote the RSRG results,
symbols denote the kMC data.

lattices is a very small transition probability for slow jumps. A
large part of the computing time is spent in attempting jumps
which are rejected. To overcome this difficulty we use the
so-called Bortz, Kalos and Lebowitz (BKL) algorithm [15].
It operates in the space of possible events instead of the real
space as the ordinary kMC algorithm does. There are no
rejected attempts which results in a high efficiency of the BKL
algorithm. It has been described in detail elsewhere [16].

We used the kMC simulations for calculations of the tracer
and jump diffusion coefficients, adsorption isotherms, and
isothermal susceptibility. The chemical diffusion coefficient
has been determined via the Kubo–Green relation, here written
as:

Dc = θ Dj
Np(N − Np)

N〈(δn)2〉 , (20)

where Np is the number of sites inside the probe area, and
〈(δn)2〉 is the mean square fluctuation of the particle number
in this area [17]. The shape of the probe area may be arbitrary.

The dependencies μ(θ) have been calculated using the
method of local states [18]. The idea of the method is rather
simple. The energy of any particle can take the 2(z + 1))

values: Ei = −εd,s + nϕ, n = 0, 1, 2, . . . , z, depending on
the number of NNs. The energies define the local states of the
particles. The set of conjugate states is determined for holes
(empty sites). All conjugate states have the same zero energy.
The frequencies of occurrence (ensemble average populations)
of the i th local state and its conjugation are denoted as σi and
σ ′

i . They are related by the condition of the detailed balance as
follows

μ = ln(σi/σ
′
i ) + Ei , i = 1, . . . , 2(z + 1). (21)

To smooth out the fluctuations it is advisable to average μ over
the most probable local states and exclude rare configurations.

We have averaged over 40 000–160 000 initial configu-
rations, depending upon the lateral interaction strength ϕ.
The accuracy has been judged by monitoring the change of
computed quantities as a function of the number of initial
configurations.

Figure 2. The pair correlation function P00 versus θ .

Figure 3. The isothermal susceptibility χT versus θ .

5. Results and discussion

Using the RSRG and MC methods we have calculated the
adsorption isotherms, pair correlation function, isothermal
susceptibility, tracer, jump, and chemical diffusion coefficients
for attractive and repulsive lateral interaction between the
particles adsorbed on an inhomogeneous honeycomb lattice.
The inhomogeneity parameter is the same for all dependencies:
εd − εs = 7 ln 2.

To illustrate the accuracy of the RSRG method used
for the calculations of the thermodynamic quantities we
plot the coverage dependencies of the chemical potential μ

(adsorption isotherms), correlation function P00 and isothermal
susceptibility χT in figures 1, 2, and 3, respectively, for some
representative values of the lateral interaction parameter ϕ.
These quantities are necessary for calculations of the jump and
chemical diffusion coefficients. For adsorption isotherms and
correlation functions, the agreement between the RSRG results
and the kMC data is excellent over the entire temperature
and coverage range for attractive and repulsive interactions.
These quantities are expressed via the first derivatives of the
free energy over its arguments. The isothermal susceptibility,
being the second derivative of the free energy over the chemical

5
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Figure 4. The tracer diffusion coefficient Dt versus θ . The kMC data
only. Symbols are connected by lines to guide the eyes.

potential, is more sensitive to the accuracy of the calculations.
There are visible discrepancies between the data obtained by
the different methods for strong attraction (ϕ = −2 ln 2) at the
half monolayer coverage.

The calculations of the diffusion coefficients require
knowledge of the correlation functions, equation (11), which
cannot be obtained by the RSRG method. For the
Langmuir lattice gas the functions are simply powers of the
corresponding vacancy densities:

P3 = (1− θd)(1− θs) [(1 − θd)(2 + θd) + θs(3 − θs)] , (22)

where θd and θs are the average occupancy of the d and
s sublattices, respectively. Such an approximation is fairly
good for θ < 1

2 , where the particles can be considered as
noninteractive. But for higher densities it gives noticeable
discrepancies. In this case we expressed all necessary functions
via the simplest two-site correlator we have at hand, P00, as
follows

〈h0h1 . . . hk〉 ≈ Pk
00(1 − θd)

1−k, 0 ∈ d,

〈h0h1 . . . hk〉 ≈ Pk
00(1 − θs)

1−k, 0 ∈ s.
(23)

This approximation works well at both ends of the coverage
interval and gives small deviations at half-monolayer coverage,
θ = 1

2 .
For the homogeneous systems and ϕ = 0, the tracer

diffusion coefficient is a monotone decreasing convex function
of the surface coverage θ . The jump diffusion coefficient is a
linear function of the surface coverage Dj(θ) ∝ 1 − θ , and the
chemical diffusion coefficient does not depend on the surface
coverage at all.

The tracer, jump, and chemical diffusion coefficients are
equal in the limit of zero surface coverage, Dt(0) = Dj(0) =
Dc(0) ≈ 2Dd . In a completely occupied lattice (diffusion of a
single vacancy) tracer and jump diffusion coefficients are also
equal, Dj(1) = Dt(1) = 0, but their ratio Dt(1)/Dj(1) �= 1.
It depends on the dimensionality and symmetry of the lattice.
The physical reason for the different behavior of the tracer

Figure 5. The jump diffusion coefficient Dj versus θ .

Figure 6. The chemical diffusion coefficient Dc versus θ .

diffusion coefficient is the following: any particle left an empty
site behind itself after every jump. If the other NN sites are
empty there is no effect, but if some of them are occupied,
the probability for the backward jump is greater than for the
forward or sideward jumps. The backward correlation is taken
into account by a correlation factor, f (θ), as follows:

Dt(θ) = f (θ)Dj(θ). (24)

The coverage dependencies of the tracer, jump, and
chemical diffusion coefficients are plotted in figures 4–6,
respectively. The dependencies for Dt were obtained by the
kMC simulations only. We have no analytical expression for
the tracer diffusion coefficient.

The behavior of the dependencies for the tracer and
jump diffusion coefficients becomes non-monotonic due to the
different character of the particle migration. The tracer and
jump diffusion coefficients have pronounced minima at the
half-monolayer coverage, but the minimum on the coverage
dependencies Dc(θ) is absent as the isothermal susceptibility,
χT , and the jump diffusion coefficient, Dj, have minima
at the same coverage which compensate each other. The

6
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nature of these minima can be explained as follows. At the
stoichiometric coverage θ = 1

2 all d sites are occupied and all
s sites are empty. The overwhelming majority of jumps will
be unsuccessful. Any particle jumping from a d site to the
NN s site cannot find another empty d site and returns back to
the initial empty site. The total displacement will be close to
zero. The isothermal susceptibility, tracer, and jump diffusion
coefficients reach their minima at this coverage.

Any deviation from the stoichiometric value increases the
particle diffusivity. For θ < 1

2 some d sites are empty,
and there are vacancies in the d sublattice. So it is possible
for activated particles to perform pair jumps to occupy other
vacancies. For θ > 1

2 all d sites are occupied and some excess
particles occupy the s sites. If a particle from a d site jumps to
an empty NN s site, another excess particle from another NN s
site can occupy the vacancy created by the previous particle.

The dependencies for the jump diffusion are very similar
to those for the tracer diffusion coefficient. The RSRG and MC
data coincide rather well.

The dependencies for the chemical diffusion coefficient
Dc are shown in figure 6. There is a rather strong effect of
the lateral interaction on the particle diffusion. The chemical
diffusion coefficient grows from its initial value D0 almost
linearly for θ < 1

2 and then jumps at θ = 1
2 . At this coverage

the lateral interaction is switched on and particles begin to
‘feel’ each other. The chemical diffusion coefficient grows
very fast if the coverage exceeds slightly the stoichiometric
value.

In the limit θ → 1, a jumping particle has two
NNs. Therefore, the limiting value of the chemical diffusion
coefficient at the monolayer coverage is equal to

lim
θ→1

Dc = D(0) exp(2ϕ). (25)

Attraction inhibits the particle migration. The relaxation
of the coverage disturbances became slower and slower as the
interaction parameter |ϕ| increases.

The numerical data for the chemical diffusion coefficient
are obtained using the Kubo–Green relation. The good
coincidence between the data obtained by the analytical and
numerical methods shows the applicability of the Kubo–Green
relation for this model.

6. Summary

We have investigated the diffusion of particle on inhomoge-
neous lattices with two kinds of sites. Such systems display
specific peculiarities which qualitatively affect the particle
diffusion as compared to homogeneous lattices. Notably,
the lattice inhomogeneity causes specific correlation between
the particle jumps. This results in a qualitatively different
non-monotonic behavior of the diffusion coefficients: the
appearance of a minimum Dt(θ) and Dj(θ).

The numerical BKL technique as well as the analytical
RSRG method have been used to compute the adsorption
isotherms and the coverage dependencies of the pair
correlation function, isothermal susceptibility, jump, tracer,
and chemical diffusion coefficients at different values of

the lateral interaction between the adsorbed particles. The
excellent agreement between the data indicates that the RSRG
method can be applied successfully for investigations of the
thermodynamic properties of the lattice gas systems with
strong lateral interactions.

The standard model of single jumps works rather well in
simple lattice gas systems provided the lattice inhomogeneity
is not substantial. However, the model is doomed to failure
even at a qualitative level of accuracy in the case of a
strongly inhomogeneous potential surface. An extension to
the model of jump pairs has been proposed which forms
a sound basis for the quantitatively correct description of
the particle diffusion in such cases. This approach is quite
general. The analytical expressions for the chemical diffusion
coefficient derived on the basis of this model extension are
valid for inhomogeneous lattices of different symmetry and
dimensionality. The proposed model of jump pairs gives a
simple and natural explanation of the peculiar characteristics
of surface diffusion on inhomogeneous lattices as mentioned
above.
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